Short note High Spin Structure in ¹²³Xe

A. Schmidt¹, I. Schneider¹, H. Meise¹, I. Wiedenhöver¹, O. Stuch¹, K. Jessen¹, D. Weisshaar¹, C. Schumacher¹, P. von Brentano¹, G. Sletten², B. Herskind², M. Bergström², J. Wrzesinski³

¹ Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany

² Niels-Bohr-Institute, Tandem Accelerator Laboratory, Risø, DK-4000 Roskilde, Denmark

³ Institute of Nuclear Research, Kraków, Poland

Received: 11 December 1997 Communicated by P. Armbruster

Abstract. Excited states of the nucleus ¹²³Xe have been investigated with the fusion–evaporation-reaction ¹¹⁰Pd(¹⁸O,5n)¹²³Xe at 86 MeV beam energy, using the compton-suppressed NORDBALL-multidetector-system at the Niels-Bohr-Institute in Risø, Denmark. The level scheme of ¹²³Xe was extended up to a level of tentative $53/2^+\hbar$. Four excited bands of 3-quasiparticle-character were observed. Analyzing the directional correlation information, we could assign spin- and parity-values to all observed bands in ¹²³Xe. The observed band structures fit well into systematics of the neighboring nuclei ¹²⁵Xe and ¹²⁷Xe.

PACS. 21.10.Re Collective levels -27.60+j $90 \le A \le 149$

The Xenon, Barium and Cerium nuclei with masses around A \approx 130 exhibit collective excitations with a deformation parameter of $\beta \approx 0.2$. At the same time, they are soft with respect to the γ -deformation parameter. The appearance of triaxial shapes is attributed to the opposite deformation driving forces of protons and neutrons [1]. A recent systematic investigation of odd-mass nuclei around A \approx 130 with the cranked shell model showed that the core can be polarized towards different triaxial shapes, depending on the quasiparticle structure [2]. The identification of the observed high-spin structures with the theoretically predicted ones depends crucially on the parity assignments.

For the nucleus ¹²³Xe only low-spin states were known [3]. To investigate the high-spin states of ¹²³Xe we performed an experiment at the NORDBALL-spectrometer in Risø. The high-spin states of ¹²³Xe and ¹²⁴Xe were populated with the fusion–evaporation-reaction ¹¹⁰Pd (¹⁸O, 4,5n)^{124,123}Xe at 86 MeV beam energy. The target consisted of a foil of Palladium enriched to 97.7% in ¹¹⁰Pd (1 mg/cm² on 3 mg/cm² Tantalum). The $\gamma\gamma$ -coincidences were measured with the NORDBALL-spectrometer at the FN TANDEM facility in Risø. The 10⁹ coincidence events were sorted into coincidence matrices employing the sum-energy and multiplicity information of the 60-segment BaF₂-calorimeter in order to separate the 4n- and 5n-reaction channels.

The high spin level scheme of 123 Xe is shown in Fig. 1. In the analysis of the coincidence spectra, 91 new transitions were placed into the level scheme, establishing 53 new levels. The level scheme of [3,4] could be confirmed except for the placement of a 891 keV transition above the $23/2^-\hbar$ level in [4], which in our coincidence data is replaced by a 876.3 keV transition, in agreement with [3]. We observed the negative parity Yrast band (E) up to a level of tentative spin $51/2^-\hbar$. This band shows a backbending at a rotational frequency $\hbar\omega \approx 0.5$ MeV, analogous to its neighbors 127 Xe and 125 Xe [5,6]. In [6] this crossing was assigned a $(\nu h_{11/2})^3$ - configuration. A second negative parity structure (H2), could be observed up to the same tentative spin. The tentative spin and parity assignment to this band is based on the relatively strong population of this band and the observation of the 1819 keV stretched E2-transition to band (E).

One very interesting 3-qp-structure is band (Z), which also exists in ¹²⁷Xe and ¹²⁵Xe [5,6]. The band is the only one observed with a strong-coupling sequence. It shows a very complicated decay pattern to the lower positive and negative parity states. This indicates that the Zband has a significantly different structure than the other bands. The spin and parity of this band could be established unambiguously from the analysis of the $\gamma\gamma$ -DCOinformation with methods analogous to those described in [7]. The absolute spin values could be assigned from the DCO pattern of a $\Delta I = 1$ cascade, namely of the 205-275-267-1128 keV γ -rays. Other spin assignments than $25/2^{+}\hbar$ ($\chi^2 \leq 1.5$) for the bandhead are excluded with values of $\chi^2 \geq 8$. It should be noted that the correlation pattern of $\Delta I = 1$ sequences show unique patterns, whereas stretched E2-sequences usually can also be fitA. Schmidt et al.: High Spin Structure in $^{123}\mathrm{Xe}$

Fig. 1. High spin level scheme of the nucleus ¹²³Xe. The band labels are chosen in analogy to ¹²⁵Xe and ¹²⁷Xe [6]

ted with $\Delta I = 0$ sequences, which makes unambiguous spin assignments in pure E2-cascades very difficult. The spins in band (Z) could also be established unambiguously up to spin $49/2^+\hbar$. The positive parity of band (Z) is a consequence of this spin assignment, since the 385 keV transition can only be of E2-character and we can assume a $(h_{11/2})^2(g_{7/2})$ - configuration. The spin values of band (Z) also determine the spin and parity values of band (Y), because with the observation of the 1051 keV, only a sequence of stretched E2-transitions remains possible.

In Fig. 2 the $\gamma\gamma$ -correlation intensity pattern of the transitions of 608 keV and 562 keV in band (Z) is shown. The experimental data fit well into the theoretically calculated $\Delta I = 1$ - cascade, excluding unambiguously a $\Delta I = 2$ and a $\Delta I = 0$ transition hypothesis.

We thank Drs. A. Dewald, A. Gelberg and J. Eberth for discussion. Many thanks to the Danish Natural Science Research Council for supporting the Tandem-Accelerator-Laboratory in Risø. This work was supported by DFG under contract Br 799/8-1.

References

 R. Wyss, A. Granderath, R. Bengtsson, P. von Brentano, A. Dewald, A. Gelberg, A. Gizon, J. Gizon, S. Harrissopu-

Fig. 2. Example for a $\gamma\gamma$ -correlation intensity pattern of the transitions 608 keV and 562 keV in band (Z). Groups 3,4,5 and 10,11,12 are asymmetric [7]

los, A. Johnson, W. Lieberz, W. Nazarewicz, J. Nyberg and K. Schiffer. Nucl. Phys. **A505** (1989) 337

 A. Granderath, P.F. Mantica, R. Bengtsson, R. Wyss, P. von Brentano, A. Gelberg, F. Seiffert. Nucl. Phys. A597 (1996) 427

- A. Luukko, J. Hattula, H. Helppi, O. Knuuttila and F. Dönau. Nucl. Phys. A357 (1981) 319
- 4. J. Hattula, S. Juutinen, M. Jääskeläinen, T. Lönnroth, A. Pakkanen, M. Piiparinen, G. Sletten. J. Phys. G13 (1987) 57
- I. Wiedenhöver, U. Neuneyer, C. Kerskens, J. Altmann, O. Stuch, J. Theuerkauf, G. Siems, R. Wirowski, M. Esche-

nauer, P. von Brentano, R. Schubart, H. Kluge, K.H. Maier. Z. Phys. ${\bf A347}~(1993)~1$

- A. Granderath, D. Lieberz, A. Gelberg, S. Freund, W. Lieberz, R. Wirowski, P. von Brentano and R. Wyss. Nucl. Phys. A524 (1991) 153
- L.P. Ekström and A. Nordlund. Nuc. Inst. Meth. A313 (1992) 421